Module V System Software(S5 CSE)

MODULE V
e Macro Preprocessor
o Macro Instruction Definition and Expansion.
o One pass Macro processor Algorithm and data structures
o Machine Independent Macro Processor Features
= Concatenation of Macro Parameters
= Generation of unique labels
= Conditional Macro Expansion
= Keyword Macro Parameters
o Macro processor design options
* Recursive Macro Expansion
= General-Purpose Macro Processors
= Macro Processing within Language Translators

e Macro Instruction (Macro)
o Itis simply a notational convenience for the programmer to write a shorthand version of a
program.
o It represents a commonly used group of statements in the source program.

e Macro Preprocessor
o Function: Substitution of one group of characters or lines for another.

It does not perform analysis of the text it handles.
It doesn’t concern the meaning of the involved statements during macro expansion.
The design of macro pre-processor is machine independent.
Macro processors are used in

= Assembly language

= High-level programming languages, e.g., C or C++

= OS command languages

= General purpose

o O O O

Expanded program

~
| A program with - I
.. . A program without
Macro definitions and Macro progr ..
Processor Macro definitions

. Macro mvocations

Assembler

-

Object program

e BASIC MACROPROCESSOR FUNCTIONS
o The fundamental functions common to all macro processors are:
= Recognize Macro Definition
= Recognize Macro Invocation/ Macro Calls
= Expand Macro Calls

1 Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck



Module V System Software(S5 CSE)

o Macro Definition
= Assembler directives used in macro definition
e MACRO: specifies the beginning of a macro definition
e MEND: specifies the end of a macro definition
= Syntax of Macro:
Macro_Name MACRO parameters

----- }Body

MEND
e Macro Prototype statement: The first line of the macro definition is called
macro prototype statement.
e The symbol in the label field of the prototype statement is the macro name.
e Parameters are begins with ‘&’
e Body: The statements that will be generated as the expansion of the macro
o Macro Invocation (Macro Call)
= A macro invocation statement contains the name of the macro being invoked and the
arguments to be used in expanding the macro.
Macro_Name parameters
= Difference between macro call and procedure call
e Macro call: Statements of the macro body are expanded each time the macro is
invoked.
e Procedure call: statements of the subroutine appear only one, regardless of how
many times the subroutine is called.
o Macro Expansion
= Each macro invocation statement will be expanded into the statements that form the
body of the macro.
= Arguments from the macro invocation are substituted for the parameters in the
macro prototype (according to their positions).
e In the definition of macro: parameter
¢ In the macro invocation: argument
= Comment lines within the macro body will be deleted.
= Macro invocation statement itself has been included as a comment line
» The label on the macro invocation statement has been retained as a label on the first
statement generated in the macro expansion

=  Example:
Source Code Expanded Code
PGM START 0 PGM START 0
ABC MACRO &A,&B . ABC P,Q //[Comment line
STA &A STA P
STB &B STB Q
MEND ABC R,S /I[Comment line
ABC P,Q STA R
ABC R,S STB S
END END
2 Prepared By: Dona Jose, AP, CSE

Reference Book: System Software: An Introduction to System Programming, Leland L Beck



Module V

System Software(S5 CSE)

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
190
195
200
205
210
215
220
225
230
235
240
245
250
255

COPY
RDBUFF

FIRST

ENDFIL

EOF
THREE
RETADR
LEMNGTH
BUFFER

START
MACRO

0 COPY FILE FROM INPUT TO OUTPUT
&INDEV, &BUFADR, &RECLTH

MACRO TO READ RECORD INTO BUFFER

CLEAR X CLEAR LOOP COUNTER
CLEAR A
CLEAR = 8
+LDT #4096 SET MAXIMUM RECORD LENGTH
TD =X'&INDEV' TEST INPUT DEVICE
JEQ *=3 LOOP UNTIL READY
RD =X’ &INDEV READ CHARACTER INTO REG A
COMPR A,S TEST FOR END OF RECORD
JEQ *411 EXIT LOOP IF EOR
STCH &BUFADR, X STORE CHARACTER IN BUFFER
TIXR T LOOP UNLESS MAXIMUM LENGTH
JLT *=1:9 HAS BEEN REACHED
STX &RECLTH SAVE RECORD LENGTH
MEND
MACRO  &OUTDEV, &BUFADR, &RECLTH
MACRO TO WRITE RECORD FROM BUFFER
CLEAR X CLEAR LOOP COUNTER
LDT &RECLTH
LDCH &BUFADR, X GET CHARACTER FROM BUFFER
TD =X’ &OUTDEV* TEST OUTPUT DEVICE
JEQ *-3 LOOP UNTIL READY
WD =X’ &OUTDEV’ WRITE CHARACTER
TIXR T LOOP UNTIL ALL CHARACTERS
JLT *-14 HAVE BEEN WRITTEN
MEND
MAIN PROGRAM
STL RETADR SAVE RETURN ADDRESS
RDBUFF _ F1,BUFFER,LENGTH READ RECORD INTO BUFFER
LA LENGTH TEST FOR END OF FILE
COMP #0
JEQ ENDFIL EXIT IF EOF FOUND
WRBUFF  05,BUFFER,LENGTH  WRITE OUTPUT RECORD
J CLOOP LOOP
WRBUFF __ 05,EOF, THREE INSERT EOF MARKER
J @RETADR
BYTE C EOF
WORD 3
RESW 1
RESW 1 LENGTH OF RECORD
RESB 4096 4096-BYTE BUFFER AREA
END FIRST

Prepared By: Dona Jose, AP, CSE

Reference Book: System Software: An Introduction to System Programming, Leland L Beck



Module V

System Software(S5 CSE)

= After macro expansion the code will be as follows

5
180
190
190a
190k
190¢
1904
190e
190f
190g
190h
1901
1907
190k
1901
150m

NSNS I NSNS SEE NSNS NSNS EEEENEEEEEEEEE

COPY
FIRST

CLOOP

S NS EEEENE N NNEEEEEEEEE EEEEEEEEEEEEEEE

ENDFIL

EQOF
THREE
RETADR
LENGTH
BUFFER

CCPY FILE FROM INPUT TO OUTPUT
SAVE RETURIN ADDRESS
READ RECORD INTO BUFFER

CLEAR LOOP COUNTER

SET MAXTMUM RECORD LENGTH

TEST INPUT DEVICE

LOOP UNTIL EEADY

READ CHARACTER INTO REG A

TEST FOR END OF RECORD

EXTT LOOF IF EOR

STCRE CHARACTER IN BUFFER

LOOF UNLESS MAXTMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

TEST FOR END OF FILE

EXIT IF EOF FOUND

WRITE OUTPUT RECORD
CLEAR LOOP COUNTER

GET CHARACTER FROM BUFFER

TEST OUTPUT DEVICE

LOOP UNTIL READY

WRITE CHARACTER

LOOP UNTIL ALL CHARACTERS
HAVE BEEN WRITTEN

LOOP

INSERT EQF MARKER
CLEAR LOOFP COUNTER

GET CHARACTER FROM BUFFER

TEST OUTPUT DEVICE

LOCOP UNTIL READY

WRITE CHARACTER

LOOP UNTIL ALL CHARACTERS
HAVE BEEN WRITTEN

LENGTH OF RECORD
4096-BYTE BUFFER AREX

START 0
STL RETADR
T R B SO TN
CLEAR X
CLEAR A
CLEAR g :
+LDT #4096
D =X'F1*
JEQ *-3
RD =X F1
COMER A, S
JEQ *:11 E
STCH BUFFER, X
TIXR T :
JuT *_19
LDA LENGTH
coMp #0
JEQ ENDFIL
WRBUFF 05, BUFFER, LENGTH
CLEAR X
LDT LENGTH
LDCH BUFFER, X
D =X’ 05"
JEQ *-3
WD =X'05°
TIXR T
S . S -
J CLOOR
e e
CLEAR X
LDCH EOF, X
™ =X’ 05"
JEQ -3
WD =X'05"
TIXR T
J @RETADR
BYTE CEOF’
WORD 3
RESW 1
RESW 1
RESB 4096
END FIRST

Prepared By: Dona Jose, AP, CSE

Reference Book: System Software: An Introduction to System Programming, Leland L Beck



Module V System Software(S5 CSE)

» Problem of the label in the body of macro:
e If the same macro is expanded multiple times at different places in the program.
There will be duplicate labels, which will be treated as errors by the assembler.
e Solutions:
o Do not use labels in the body of macro.
o Explicitly use PC-relative addressing instead.
= Egq:
o JEQ*+11 /l[jump to the location LOCCTR + 11
o JLT*14 /l[jump to the location LOCCTR — 14
o Itisinconvenient and error-prone.
o Example:
= The following program shows an example of a SIC/XE program using macro
Instructions.
= This program defines two macros:
e RDBUFF: Similar to RDREC subroutine
e WRDUFF: Similar to WRREC subroutine
= Line 10 and 100 are the beginning of first and second macro definition.
= The instruction on line 55 is JEQ *-3
e Means jump to 3 location back.
e This type of PC relative addressing mode is used to avoid labels in the macro
body.
= The MAIN program contains 3 macro calls on line 190, 210 and 220.
= Each macro invocation statement has been expanded into the statements that form
the body of the macro, with the arguments from macro invocation substituted for the
parameters in macro prototype.
= The arguments and parameters are associated with one another according to their
positions.
= The macro definition has been deleted since they have been no longer needed after
macros are expanded

e TYPES OF MACROS
o Simple Macro
o Parameterized Macro
o Nested Macro
o Recursive Macro

e Simple Macro
o A macro without argument is called simple macro.

Source Code Expanded Code

ABC MACRO .ABC
STA A STA A
STB B STB B
MEND .ABC
ABC STA A
ABC STB B

5 Prepared By: Dona Jose, AP, CSE

Reference Book: System Software: An Introduction to System Programming, Leland L Beck



Module V

System Software(S5 CSE)

e Parameterized Macro
o A macro with argument is called parameterized macro.
o Two types of Parameterized Macros

Positional Parameters
Keyword Parameters

o Positional Parameters

The programmer must specify the arguments in proper order.

Parameters and arguments are associated according to their position in the
macro prototype and invocation.

When the macro is called, the parameters will be replaced within the macro
body by the value specified.

If an argument is to be omitted, a null argument should be used to maintain the
order in the macro invocation statement.

Source Code Expanded Code
ABC MACRO &A,&B .ABC P,Q
STA &A STA P
STB &B STB Q
MEND .ABC Q,P
ABC P,Q STA Q
ABC Q,P STB P

o Keyword Parameters

Arguments may appear in any order.

Each argument value is written with a keyword that names the corresponding
parameter. Each parameter name is followed by =

Null arguments no longer need to be used.

Source Code Expanded Code
ABC MACRO &A=,&B= .ABC A=P,B=Q
STA &A STA P
STB &B STB Q
MEND .ABC B=Q,A=P
ABC A=P,B=Q STA P
ABC B=Q,A=P STB Q

e Nested Macro
o A macro body may contain another macro definition
o Example: Here the macro SWAP defines another macro STORE inside it.

SWAP MACRO &X,&Y /IOuter Macro Definition
LDA &X
LDX &Y

STORE MACRO &X,&Y /lInner Macro Definition
STA &Y
STX &X
MEND
MEND

o The expansion of nested macro calls follows the last-in-first-out rule(LIFO).
o The expansion of latest macro call is completed first.

Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck



Module V System Software(S5 CSE)

e Recursive Macros
o A macro definition contains another macro call. This call may be the same macro or
a different macro.
ABC MACRO &A,&B

PQR X,Y

MEND
POR MACRO  &P,&Q

e MACRO PROCESSOR ALGORITHM AND DATA STRUCTURES
o Macro Processors can be implemented in two ways
= Two Pass Macro Preprocessor
e Pass 1: All macro definitions are processed
e Pass 2: All macro invocation statements are expanded
e Disadvantage: Nested macros definitions are not allowed.
= Single Pass Macro Preprocessor
e Nested macro definitions are allowed but nested calls are not allowed.
e The definition of a macro must appear in the source program before any
statements that invoke that macro.
e Data Structures for One Pass Macro Preprocessor
o Three Data Structures
= Definition table (DEFTAB)
e The macro definition is stored in definition table (DEFTAB), which
contains
o Macro prototype statement
o Macro body statements
e Comment lines from macro definition are not entered into
DEFTAB.
= Name table (NAMTAB)
e Stores macro names
e For each macro definition, NAMTAB contains pointers to
beginning and end of definition in DEFTAB.
= Argument table (ARGTAB)
e When macro invocation statements are recognized, the arguments
are stored in ARGTAB according to their position in argument list.
e As the macro is expanded, arguments from ARGTAB are
substituted for the corresponding parameters in the macro body.

7 Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck



Module V

System Software(S5 CSE)

NAMTAB
DEFTAB
ABC
> ABC MACRO &A,&B
STA 71

ARGTAB STB 72
1/ P MEND
2Q
3

e The position notation is used for the parameters.
o &A has been converted to ?1
o &B has been converted to ?2, and so on.

e When the ?n notation is recognized in a line from DEFTAB, a
simple indexing operation supplies the property argument from
ARGTAB.

Algorithm for One Pass Macro Preprocessor

ONE_PASS_MACRO()
{ EXPANDING= FALSE
while OPCODE !="END’
{
GETLINE()
PROCESSLINE()
}
}
PROCESSLINE()
{ Search NAMETAB for OPCODE

If found then EXPAND()

Else if OPCODE="MACRO’ then  DEFINE()

Else Write source line to expanded file
}
DEFINE()

{ Enter macro name into NAMTAB
Enter macro prototype into DEFTAB
LEVEL =1
While LEVEL >0
{ GETLINE()
If this is not a comment line
{ Substitute positional notation for parameters
Enter line into DEFTAB
If OPCODE="MACRO’ LEVEL = LEVEL+1
Else If OPCODE="MEND’ LEVEL = LEVEL-1

Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck



Module V

System Software(S5 CSE)

}

Store in NAMETAB pointers to beginning and end of definition
}
EXPAND()

{ EXPANDING = TRUE
Get prototype statement from DEFTAB
Set up arguments from macro invocation in ARGTAB
Write macro invocation to expanded file as comment
While not end of macro definition
{ GETLINE()
PROCESSLINE()

}
EXPANDING = FALSE
}
GETLINE()
{ If EXPANDING
{
Get next line of macro definition from DEFTAB
Substitute arguments from ARGTAB for positional notation
}
Else Read next line from input file
}

o The procedure DEFINE, which is called when the beginning of a macro
definition is recognized, makes the appropriate entries in DEFTAB and
NAMTAB.

o When a macro definition is being entered into DEFTAB, the normal
approach is to continue until an MEND directive is reached.

o This would not work for nested macro definition because the first MEND
encountered in the inner macro will terminate the whole macro definition
process.

o To solve this problem, a counter LEVEL is used to keep track of the level
of macro definitions.
= Increase LEVEL by 1 each time a MACRO directive is read.
= Decrease LEVEL by 1 each time a MEND directive is read.

o A MEND terminates the whole macro definition process when LEVEL
reaches 0.

o This process is very much like matching left and right parentheses when
scanning an arithmetic expression.

o EXPAND is called to set up the argument values in ARGTAB and expand
a macro invocation statement.

o The procedure GETLINE gets the next line to be processed
= This line may come from DEFTAB or from the input file, depending
upon whether the Boolean variable EXPANDING is set to TRUE or
FALSE.

Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck




Module V

System Software(S5 CSE)

MACHINE INDEPENDENT MACRO PROCESSOR FEATURES

o Following are the features that are not directly related to the architecture of computer for
which the macro processor is written

Concatenation of Macro Parameters
Generation of unique labels
Conditional Macro Expansion
Keyword Macro Parameters

o Concatenation of Macro Parameters

Parameters to be concatenated with other character strings.

Suppose a program contains a set of series of variables:

e XAl, XA2, XA3,...

e XBI, XB2, XB3,... etc.

If similar processing is to be performed on each series of variables, the programmer
might want to incorporate this processing into a macro instruction.

The parameter to such a macro instruction could specify the series of variables to be
operated on (A, B, C ...).

The macro processor constructs the symbols by concatenating X, (A, B, ...), and
(1,2,3,...) in the macro expansion.

Such parameters are begins with & and ends with ->. (= is a concatenation
operator. It will not appear in the macro expansion).

Example:

1 suM MACRO &ID

2 LD HKEID— 1

3 ADD HKEID— 2

= ADD HE2TID— =2

S ST HEID—— S

=] MEMND
=Y | o sumM BETA
LA AL LDA HBEATAL
ADD» WD ADDy HKBEATAZ
ADD WA ADD XBEATAS
STA wWAS STA XBEATAS

o Generation of unique labels

Labels in the macro body may cause “duplicate labels” problem if the macro is
invocated and expanded multiple times.

Use of relative addressing at the source statement level is very inconvenient, error-
prone, and difficult to read.

It is highly desirable to

e Let the programmer use label in the macro body

e Let the macro processor generate unique labels for each macro expansion.
Labels used within the macro body should begin with $.

During macro expansion, the $ will be replaced with $xx, where xx is a two-
character alphanumeric counter of the number of macro instructions expanded.

e For the first macro expansion in a program, xx will have the value AA.

e For succeeding macro expansions, xx will be set to AB, AC etc.

e This allows 1296 macro expansions in a single program

10

Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck



Module V System Software(S5 CSE)

= Example:

Source Code Expanded Code

PGM START 0 PGM  START O

ABC MACRO &X |
........... $AALL ...........

$L1 ...l JEQ $AAL1L 1% macro expansion
JEQ $LL |
MEND $ABL1 ...........
ABC A JEQ $ABL1 2" macro expansion
ABC B |
END END

o Conditional Macro Expansion
= Normally same macro calls will generate same set of statements.
= Conditional Macro Expansion (Conditional Assembly): Sequence of statements
generated for macro expansion is depends on the arguments supplied in the macro
invocation.
= Conditional assembly depends on parameters provides
» Macro-time variables
e Any symbol that begins with symbol & and not a macro instruction parameter
inside a macro definition is considered as macro-time variable.
e Used to store working values during the macro expansion
o Usually store the evaluation result of Boolean expression
o Control the macro-time conditional structures
e ltisinitializedto 0
e SET macro processor directive is used to assign a particular value to a macro
time variable.
o Ex: &EORCK  SET 1
&EORCTR SET &EORCTR+1
Here EORCK is a Macro-time variable and this statement will not be in the expanded code.
» Macro-time conditional structure
e |F-ELSE-ENDIF
e WHILE-ENDW
*» |F-ELSE-ENDIF structure
The macro processor must maintain a symbol table
This table contains the values of all macro-time variables used
Entries in this table are made or modified when SET statements are processed.
This table is used to look up the current value of a macro-time variable
whenever it is required.
e When an IF statement is encountered during the expansion of a macro, the
specified Boolean expression is evaluated. If value is
o TRUE
= The macro processor continues to process lines from DEFTAB until it
encounters the next ELSE or ENDIF statement.
= |f ELSE is encountered, then skips to ENDIF

11 Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck



Module V System Software(S5 CSE)

o FALSE
*= The macro processor skips ahead in DEFTAB until it finds the next
ELSE or ENDIF statement.
= EX:
MACRO &COND
IF (&COND NE )
PART I
ELSE
PART Il
END IF
ENDM
o Part I'is expanded if condition part is true, otherwise part 1l is expanded
o Compare operator: NE, EQ, LE, GT
e |F, ELSE and ENDIF statements will not be in the expanded code.
=  WHILE-ENDW structure(Macro-time looping statement)
e When a WHILE statement is encountered during the expansion of a macro, the
specified Boolean expression is evaluated. If the value is
o TRUE
= The macro processor continues to process lines from DEFTAB until it
encounters the next ENDW statement.
= When ENDW is encountered, the macro processor returns to the
preceding WHILE, re-evaluates the Boolean expression, and takes
action based on the new value.
o FALSE
= The macro processor skips ahead in DEFTAB until it finds the next

ENDW statement and then resumes normal macro expansion.
WHIT.E ( cond )

ENDW
e WHILE and ENDW statements will not be in the expanded code.

12 Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck



Module V

System Software(S5 CSE)

= Example:
Macro Definition:
25 RDBUFF MACRO  &INDEV, &BUFADR, &RECLTH, &EOR. &MAXLTH
26 - TIF (&EOR NE* ')
27 &EORCK | SET 1
28 _ ENDIF
30 CLEAR X CLEAR LOOP COUNTER
35 CLEAR A
38 , - IF (&FORCK EQ 1)
40 Macro-time LDCH  =X'&EOR’ SET EOR COUNTER
42 variable RMO A S
43 . ENDIF
44 - IF (&MAXLTH EQ < 7)
45 +LDT #4096 SET MAX LENGTH = 4096
46 ELSE
47 +LDT #&MAXLTH SET MAXIMUM RECORD LENGTH
48 - ENDIF
50 SLOOP  TD =X‘&INDEV' TEST INPUT DEVICE
55 JEQ $LOOP LOOP UNTIL READY
60 RD =X'RINDEV* READ CHARACTER INTI REG A
63 ©IF (%EORCK EQ 1)
65 COMPR A S TEST FOR END OF RECORD
70 JEQ SEXIT EXIT LOOP IF EOR
73 - ENDIF
75 STCH &BUFADR, X STORE CHARACTER IN BUFFER
80 TIXR T LOOP UNLESS MAXIMUN LENGTH
85 T $LOOP HAS BEEN REACHED
90 SEXIT STX &RECLTH SAVE RECORD LENGTH
95 MEND
Macro Call:
RDBUFF  F31 BUF, RECL, 04, 2043

Expanded Code:

30
33
40
42
47
50
55
&0
B3
70
73
a0
B3
o0

CLEAR
CLEAR
LDCH
RMO
+LOT

SRAALOOF TD

SRAEXIT

JEQ
RD
COMPR
JEQ
STCH
TIXR
LT
STX

X CLEAR LOOP COUNTER
A
=X'04° SET EOR CHARACTER
A S
#2048 SET MAXIMUM RECORD LENGTH
=X'F3’ TEST INPUT DEVICE
$AALOOP LOOP UNTIL READY
=X'F¥ READ CHARACTER INTI REG A
A, S TEST FOR END OF RECORD
$AAEXTT EXIT LOOP IF EOR
BUF, X STORE CHARACTE IN BUFFER
T LOOP UNLESS MAXIMUM LENGTH
$AALOOP HAS BEEN REACHED
RECL SAVE RECORD LENGTH

13

Prepared By: Dona Jose, AP, CSE

Reference Book: System Software: An Introduction to System Programming, Leland L Beck



Module V System Software(S5 CSE)

Macro Call:
RDBUFF  OF, BUFFER, LENGTH, , 80
Expanded Code:

20 CLEAR X CLEAR LOOFP COUNTER
35 CLEAR, A
47 +LDOT F80 SET MAXIMUM RECORD LENGTH
50 SABLOOP TD =X"0F’ TEST INPUT DEVICE
55 JEQ $ABLOOP LOOP UNTIL READY
o0 RD» =X"0E" READ CHARACTER IM REG A
K= STCH BUFFER, X STORE CHARACTER IMN BUFFER.
B0 TIXR T LOOP UMLESS MAXIMUM LENGTH
B7 T LABLOOP HAS BEEN REACHED
a0 SABEXIT STX LENGTH SAVE RECORD LENGTH
Macro Call:

RDBUFF  F1. BUFF, ELENG, 04
Expanded Code:

30 CLEAR bt CLEAR LOOP COUNTER
35 CLEAR A
40 LDCH =X"04" SET EOR CHARACTER
42 RMO A S
45 +LDOT 24096 SET MAX LENGTH = 4096
S0 SACLOOP TD =¥"F1° TEST INPUT DEVICE
55 JEQ $ACLOOP LOCP UNTIL READY
&0 RD =XF1° READ CHARACTER INTI REG A
65 COMPR  A.S TEST FOR EMD OF RECORD
70 JEQ $ACEXIT EXIT LOOP IF EOR
75 STCH BUFF,X STORE CHARACTER IN BUFFER
80 TIXR T LOCP UNLESS MAXIMUM LENGTH
85 LT $ACLOOP HAS LOOP REACHED
a0 SACEXIT STX RLEMG SAVE RECORD LENGTH
= Example:
Macro Definition:
25 RDBUFF MACRC  &INDEV, &BUFADR, 2RECLTH, &EOR
27 &EORCT SET %MNITEMS (&EOR) +—— Macro processor function
30 CLEAR X CLEAR LOOP COUNTER
35 CLEAR A
45 +LOT 24096 SET MaX LEMGTH = 4095
S0 SLOOP D =¥ &INDEW" TEST INPUT DEWVICE
55 JEQ $LOOP LOOP UNTIL READY
&0 RD =¥ &INDEW" READ CHARACTER INTO REG A
63 &CTR SET 1
& ~ WWHILE {&CTR LE &EQRCT)
65 COMPR. =X 0000&EOR[&CTR]” <+ List index
70 JEQ SEXIT
71 &CTR SET &CTR+1
73 . EMDW
75 " STCH BBUFADR, X STORE CHARACTER IM BUFFER
B0 TIXR T LOOP UNMLESS MAXIMUM LENGTH
85 T $LOOP HAS BEEM REACHED
a0 SEXIT ST BRECLTH SAVE RECORTD LEMGTH
100 MEMD
14 Prepared By: Dona Jose, AP, CSE

Reference Book: System Software: An Introduction to System Programming, Leland L Beck



Module V

System Software(S5 CSE)

%NITEMS is a macro processor function that returns the number of members in the
argument list.

Macro Call:

RDBUFF  F2, BUFFER, LENGTH, (00, 03, 04)

-
— List
Here &EOR is (00, 03, 04). Then %NITEMS(&EOR) is 3.
On the first iteration the expression &EOR[&CTR] on line 65 has the value 00.
On the second iteration it has the value 03, and so on.
Expanded Code:

30 CLEAR X CLEAR. LOOP COUNTER

33 CLEAR A

43 +LOT #4096 SET MAX LENGTH = 4096

50 SARALOOP TD =K'F TEST INPUT DEVICE

33 JEQ $AALOOP LOOP UNTIL READY

B0 RD =X'F2’ READ CHARACTER INTO REG A
B3 - COMP - =X"000000°

70 _IEQ SAAEXTT

B3 COMP  =X"000003"

70 JEQ SAAEXTT

B3 CCOMP =X7000004°

70 JEQ $AAEXIT

73 STCH BUFFER, X STORE CHARACTER. IN BUFFER
30 TIXR T LOOP UNLESS MAXIMUM LENGTH
33 LT $AALOOP HAS BEEN REACHED

o0 SRAEXIT STX LENGTH SAVE RECORD LENGTH

o Keyword Macro Parameters

Positional parameters

e Parameters and arguments are associated according to their positions in the
macro prototype and invocation.

e The programmer must specify the arguments in proper order.

e |f an argument is to be omitted, a null argument should be used to maintain the
proper order in macro invocation statement.

e For example: Suppose a macro instruction ABC has 10 possible parameters, but
in a particular invocation of the macro only the 3rd and 9™ parameters are to be
specified. The macro call statement is

ABC ,DIRECT,,,,3

e Disadvantage: It is not suitable if a macro has a large number of parameters, and
only a few of these are given values in a typical invocation.

e Solution: Use Keyword parameters instead of Positional parameters.

Keyword parameters

e Each argument value is written with a keyword that names the corresponding
parameter.

e Arguments may appear in any order.

¢ Null arguments no longer need to be used.

15

Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck



Module V

System Software(S5 CSE)

e Each parameter name is followed by =
e After the =, a default value can be specified for some of the parameters. The
parameters are assumed to have this default value if its name does not appear in
the macro invocation statement.
e For example: Suppose a macro instruction ABC has 10 possible parameters, but
in a particular invocation of the macro only the 3rd and 9™ parameters are to be
specified. If the 3rd parameter is named & TYPE and 9th parameter is named
&CHANNEL. The macro call statement will be

o Easierto read
o Less error-prone than the positional method

Example:

Macro Definition:
The following macro definition contains 5 parameters.

or

ABC TYPE=DIRECT,CHANNEL=3

ABC CHANNEL=3, TYPE=DIRECT
e Advantage:

(&INDEV,&EOR,&,MAXLTH) having default value.
&INDEV=F1, &BUFADR=, &RECITH=, &EOR=04, &MAXI TH=4096

25 RDBUFF

26

27 &EORCK

28
30
35
38
40
42
43
47

50 $LOOP

55
60
63
65
70
73
75
80
85

a0 SEXIT

95
Macro Call:

ROBUFF

MACROD
IF
SET
ENDIF
CLEAR
CLEAR
IF
LO:H
RMO
ENDIF
+LDT
TD
JEQ
RD
IF
COMPR
JEQ
ENDIF
STCH
TIXR
T
5TX
MEND

Three of them

(REOR NE**)
1

X

A

(&EORCK EQ 1)
=X'REOR’

AS

#MAXLTH
=X'&INDEV’
$LOOP
=X'&INDEV’
(&EORCK EQ 1)
AS
SEXIT

$BUFADR, X
T

$LOOP
&RECLTH

Parameters with def

CLEAR LOOF COUNTER

SET EOR CHARACTER

SET MAXIMUM RECORD LENGTH
TEST INPUT DEVICE

LOOF UNTIL READY

READ CHARACTER INTI REG A

TEST FOR END OF RECORD
EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER
LOOP UNLESS MAXTMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

BUFADR=BUFFER, RECLTH-LENGTH

ault value

16

Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck



Module V System Software(S5 CSE)

Expanded Code

0 CLEAR X CLEAR LOOP COUNTER
35 CLEAR A

40 LDCH  =X'04" SET EOR CHARACTER

42 RMO A S

47 +1L0T #4006 SET MAXIMUM RECORD LENGTH
50 $AALOOP TD =X'F1° TEST INPUT DEVICE

55 IEQ $AALOOP LOOP UNTIL READY

60 RD =X'F1’ READ CHARACTER INTI REG A
65 COMPR A, S TEST FOR END OF RECORD

70 JEQ SAAEXIT EXIT LOOP IF EOR

75 STCH BUFFER, X STORE CHARACTER IN BUFFER
80 TIXR T LOOP UNLESS MAXIMUM LENGTH
85 LT $AALOOP HAS BEEN REACHED

ap $AAEXUT STX LENGTH SAVE RECORD LENGTH

e MACROPROCESSOR DESIGN OPTIONS
o Recursive Macro Expansion
o General-Purpose Macro Processors
o Macro Processing within Language Translators

o Recursive Macro Expansion
= Invoke a macro from another macro definition

=  Example:
10 RDBUFF MACRO &BUFADR, &RECLTH, &INDEV
i5 .
20 . MACRO TO READ RECORD INTO BUFFER
25 .
30 CLEAR X CLEAR LOOP COUNTER
35 CLEAR A
40 CLEAR S
45 +LDT F4096 SET MAXIMUN RECORD LENGTH
50 SLOOP RDCHAR SINDEV READ CHARACTER INTO REG A
65 COMPR A, S TEST FOR END OF RECORD
70 JEQ &EXTT EXIT LOOP IF EOR
75 STCH &BUFADR, X STORE CHARACTER IMN BUFFER
80 TIXR T LOOP UNLESS MAXIMUN LENGTH
85 LT $LOOP HAS BEEMN REACHED
a0 SEXIT STX &RECLTH SAVE RECORD LENGTH
as MEND
5 RDCHAR MACRO &IN
10 .
15 .  MACROTO READ CHARACTER INTO REGISTER A
20 .
25 ™D =X"&IN- TEST INPUT DEVICE
30 JEQ *-3 LOOP UNTIL READY
35 RD =X"&IN- READ CHARACTER
40 MEND
17 Prepared By: Dona Jose, AP, CSE

Reference Book: System Software: An Introduction to System Programming, Leland L Beck



Module V System Software(S5 CSE)

e RDBUFF and RDCHAR are the 2 macro definitions.
e RDCHAR is used to read a character from an input device to register A.
e Macro Call: RDBUFF BUFFER, LENGTH, F1
= One pass macro processor cannot handle such kind of recursive macro invocation
and expansion
= Reasons:
e The procedure EXPAND would be called recursively, thus the invocation
arguments in the ARGTAB will be overwritten.
o The procedure EXPAND would be called when the macro was recognized.
The arguments from the macro invocation would be entered into ARGTAB

as follows.
Parameter Value
1 BUFFER
2 LENGTH
3 F1
4 (unused)

o The Boolean variable EXPANDING would be set to TRUE, and expansion
of the macro invocation statement would begin. The processing would
proceed normally until statement invoking RDCHAR is processed. This
time, ARGTAB would look like

Parameter

Value

1

F1

2

(Unused)

e The Boolean variable EXPANDING would be set to FALSE when the “inner”
macro expansion is finished, that is, the macro process would forget that it had
been in the middle of expanding an “outer” macro.

o At the expansion, when the end of RDCHAR is recognized, EXPANDING
would be set to FALSE. Thus the macro processor would forget that it had
been in the middle of expanding a macro when it encountered the
RDCHAR statement. In addition, the arguments from the original macro
invocation (RDBUFF) would be lost because the value in ARGTAB was
overwritten with the arguments from the invocation of RDCHAR

e A similar problem would occur with PROCESSLINE since this procedure too
would be called recursively.

= Solutions:

e Write the macro processor in a programming language that allows recursive
calls, thus local variables will be retained.

e Use a Stack to save ARGTAB.

e Use a counter to identify the expansion

18 Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck



Module V

System Software(S5 CSE)

= Single Pass Macro Processor Algorithm to handle recursive calls

ONE_PASS_MACRO()

{ EXPANDING= FALSE
SP=-1
N=0
while OPCODE !="END’
{ GETLINE()

PROCESSLINE()

}

}

PROCESSLINE()
{ Search NAMETAB for OPCODE

If found then EXPAND()

Else if OPCODE="MACRO’then  DEFINE()

Else Write source line to expanded file
¥
DEFINE()

{ Enter macro name into NAMTAB
Enter macro prototype into DEFTAB
LEVEL =1
While LEVEL >0
{ GETLINE()
If this is not a comment line
{ Substitute positional notation for parameters
Enter line into DEFTAB
If OPCODE="MACRO’ LEVEL = LEVEL+1
Else If OPCODE="MEND’ LEVEL = LEVEL-1
}
¥
Store in NAMETAB pointers to beginning and end of definition
¥
Procedure EXPAND
{ setS(SP+N+ 2)=SP
set SP=SP +N +2
set S(SP + 1) =DEFTAB index from NAMTAB

setup macro call argument list array in S( SP + 2).......... S(SP + N + 1) where N =

total number of arguments
while not end of macro definition and Level =0 do

{
GETLINE
PROCESSLINE
}
N =SP-S(SP)-2 /lreset previous calls number of arguments
SP=S(SP) /I previous calls starting index of S

19

Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck




Module V System Software(S5 CSE)

procedure GETLINE
{
if SP 1=-1 then
{
increment DEFTAB pointer to next entry
setS(SP+1)=S(SP+1)+1
get the line from DEFTAB with the pointer S( SP+1)
substitute arguments from macro call S (SP + 2)........... S(SP+N+1)
}
else
read next line from input file
}
o G

o General-Purpose Macro Processors
= Macro processors that do not dependent on any particular programming language,
but can be used with a variety of different languages.
= Example: ELENA macro processor
= Advantages

e Programmers do not need to learn many macro languages.

e Although its development costs are somewhat greater than those for language
specific macro processor, this expense does not need to be repeated for each
language, thus save substantial overall cost.

= Disadvantages

e Large number of details must be dealt with in a real programming language

e Inatypical programming language, there are several situations in which normal
macro parameter substitution should not occur

e Each programming language has its own methods for identifying comments

o Some languages use special characters to mark the start and end of a
comment.

o Some languages use a special character to mark only the start of a
comment. The comment is automatically terminated at the end of the
source line.

o Some languages use a special symbol to flag an entire line as a comment.

o In most assembly languages, an characters on a line following the end of
the instruction operand field are automatically taken as comments

e Each programming languages having their own facilities for grouping together
terms, expressions, or statements

o Some languages use keywords such as begin and end for grouping
statements.

o Others use special characters such as { and } for grouping statements.

e A more general problem involves the tokens of the programming language like
identifiers, constants, operators, and keywords

o Languages differ their restrictions on the length of identifiers and the rules
for the formation of constants.

o Some languages support multiple character operators. Eg: **

20 Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck



Module V System Software(S5 CSE)

e Another potential problem with general purpose macro processors involves the
syntax used for macro definitions and macro invocation statements. With most
special purpose macro processors, macro invocations are very similar in form to
statements in the source programming language.

o Macro Processing within Language Translators
» The macro processors we discussed are called “Preprocessors”.
e Process macro definitions
e Expand macro invocations
e Produce an expanded version of the source program, which is then used as input
to an assembler or compiler
= Alternative design: Combine the macro processing functions with the language
translator
e Line-by-line macro processor
e Integrated macro processor
= Line-by-Line Macro Processor
e Used as a sort of input routine for the assembler or compiler
o Read source program
o Process macro definitions and expand macro invocations. The expanded
code is not written to an expanded source file.
o Pass output lines to the assembler or compiler
e Benefits
o Avoid making an extra pass over the source program. So it is more efficient
than using a macro processor.
o Data structures required by the macro processor and the language translator
can be combined (e.g., OPTAB and NAMTAB)
o Utility subroutines can be used by both macro processor and the language
translator.
= Scanning input lines
= Searching tables
= Data format conversion
o ltis easier to give diagnostic messages related to the source statements.
» Integrated Macro Processor
e An integrated macro processor can potentially make use of any information
about the source program that is extracted by the language translator.
e Many real programming languages have certain characteristics that create
unpleasant difficulties.
o Ex: Consider the following FORTRAN statement
= DO1001=1,20
e Itisanormal DO statement
e 100 is the line number
= DO1001=1
e An assignment statement
e DO100I is variable (blanks are not significant in FORTRAN)

21 Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck



Module V System Software(S5 CSE)

=

N Ok

10.
11.
12.
13.

14.
15.

16.
17.
18.
19.
20.
21.

o The proper interpretation of the characters DO, 100 etc, cannot be decided
until the rest of the statement is examined. Such interpretations would be
very important for a macro expansion with macro name I.

e An integrated macro processor can support macro instructions that depend upon
the context in which they occur.

o The expansion of macro could also depend up on a variety of
characteristics of its arguments.
= Disadvantages of Line-by-line and Integrated Macro processor:

e More expensive: The cost of macro processor development must be added to
the cost of language translator, which result in a more expensive piece of
software.

e More complex: The assembler will be more complex.

e Size is larger: The size may be problem if the translator is to run on a computer
with limited memory.

e Take more time: The assembler will take more time to assemble the code.

Previous Year University Questions
Explain the concept of macro definition and expansion with the help of examples.
Differentiate between a macro and a subroutine. Illustrate macro definition and expansion using
an example
A code segment need to be repeatedly used in various parts of assembly language program
and fast execution is also needed. Would you use a macro or a subroutine? Justify your
answer with help of examples
Describe the data structures used in a one pass macro processor algorithm. Give examples
What are the data structures required for a macroprocessor algorithm? Explain the format of each
Give the algorithm for a one pass macro processor
Explain the working of One pass Macro Processor
Write the algorithm for one pass macro processor and explain the process, showing when and
how the different data structures are used
Certain macro processor features are independent of the machine architecture Give the details
of such machine independent macro-processor features
Write short note on concatenation of macro parameters within a character string
How are unique labels generated in a Macro Expansion
Is it possible to include labels in the body of macro definition? Justify your answer.
Is it possible to use labels within the macro body? Explain your answer with the help of
examples. Also illustrate a possible solution for the same
Explain conditional macro expansion with an example
Explain the different types of conditional macro expansion statements and their
implementation with examples
Write notes on keyword macro parameters, giving suitable examples
Differentiate between keyword and positional macro parameters
List and explain the different design options available for macroprocessors
Explain recursive macro expansion with example
Write notes on Recursive Macro Expansion
What do you mean by recursive macro expansion? What are the possible problems associated
with it?

22

Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck



Module V System Software(S5 CSE)

22. What are the important factors considered while designing general purpose macro
processors?
23. What is meant by line-by-line macro processor? What are its advantages?

23 Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck



