
Module V System Software(S5 CSE)

1 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

MODULE V

• Macro Preprocessor

o Macro Instruction Definition and Expansion.

o One pass Macro processor Algorithm and data structures

o Machine Independent Macro Processor Features

▪ Concatenation of Macro Parameters

▪ Generation of unique labels

▪ Conditional Macro Expansion

▪ Keyword Macro Parameters

o Macro processor design options

▪ Recursive Macro Expansion

▪ General-Purpose Macro Processors

▪ Macro Processing within Language Translators

• Macro Instruction (Macro)

o It is simply a notational convenience for the programmer to write a shorthand version of a

program.

o It represents a commonly used group of statements in the source program.

• Macro Preprocessor

o Function: Substitution of one group of characters or lines for another.

o It does not perform analysis of the text it handles.

o It doesn’t concern the meaning of the involved statements during macro expansion.

o The design of macro pre-processor is machine independent.

o Macro processors are used in

▪ Assembly language

▪ High-level programming languages, e.g., C or C++

▪ OS command languages

▪ General purpose

• BASIC MACROPROCESSOR FUNCTIONS

o The fundamental functions common to all macro processors are:

▪ Recognize Macro Definition

▪ Recognize Macro Invocation/ Macro Calls

▪ Expand Macro Calls

Module V System Software(S5 CSE)

2 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

o Macro Definition

▪ Assembler directives used in macro definition

• MACRO: specifies the beginning of a macro definition

• MEND: specifies the end of a macro definition

▪ Syntax of Macro:

 Macro_Name MACRO parameters

 ----- Body

 MEND

• Macro Prototype statement: The first line of the macro definition is called

macro prototype statement.

• The symbol in the label field of the prototype statement is the macro name.

• Parameters are begins with ‘&’

• Body: The statements that will be generated as the expansion of the macro

o Macro Invocation (Macro Call)

▪ A macro invocation statement contains the name of the macro being invoked and the

arguments to be used in expanding the macro.

 Macro_Name parameters

▪ Difference between macro call and procedure call

• Macro call: Statements of the macro body are expanded each time the macro is

invoked.

• Procedure call: statements of the subroutine appear only one, regardless of how

many times the subroutine is called.

o Macro Expansion

▪ Each macro invocation statement will be expanded into the statements that form the

body of the macro.

▪ Arguments from the macro invocation are substituted for the parameters in the

macro prototype (according to their positions).

• In the definition of macro: parameter

• In the macro invocation: argument

▪ Comment lines within the macro body will be deleted.

▪ Macro invocation statement itself has been included as a comment line

▪ The label on the macro invocation statement has been retained as a label on the first

statement generated in the macro expansion

▪ Example:

Source Code Expanded Code

PGM START 0

ABC MACRO &A,&B

STA &A

STB &B

MEND

ABC P,Q

ABC R,S

END

PGM START 0

. ABC P,Q //Comment line

STA P

STB Q

.ABC R,S //Comment line

STA R

STB S

END

Module V System Software(S5 CSE)

3 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module V System Software(S5 CSE)

4 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

▪ After macro expansion the code will be as follows

Module V System Software(S5 CSE)

5 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

▪ Problem of the label in the body of macro:

• If the same macro is expanded multiple times at different places in the program.

There will be duplicate labels, which will be treated as errors by the assembler.

• Solutions:

o Do not use labels in the body of macro.

o Explicitly use PC-relative addressing instead.

▪ Eg:

• JEQ *+11 //jump to the location LOCCTR + 11

• JLT *-14 //jump to the location LOCCTR – 14

o It is inconvenient and error-prone.

o Example:

▪ The following program shows an example of a SIC/XE program using macro

Instructions.

▪ This program defines two macros:

• RDBUFF: Similar to RDREC subroutine

• WRDUFF: Similar to WRREC subroutine

▪ Line 10 and 100 are the beginning of first and second macro definition.

▪ The instruction on line 55 is JEQ *-3

• Means jump to 3 location back.

• This type of PC relative addressing mode is used to avoid labels in the macro

body.

▪ The MAIN program contains 3 macro calls on line 190, 210 and 220.

▪ Each macro invocation statement has been expanded into the statements that form

the body of the macro, with the arguments from macro invocation substituted for the

parameters in macro prototype.

▪ The arguments and parameters are associated with one another according to their

positions.

▪ The macro definition has been deleted since they have been no longer needed after

macros are expanded

• TYPES OF MACROS

o Simple Macro

o Parameterized Macro

o Nested Macro

o Recursive Macro

• Simple Macro

o A macro without argument is called simple macro.

Source Code Expanded Code

ABC MACRO

STA A

STB B

MEND

ABC

ABC

. ABC

STA A

STB B

. ABC

STA A

 STB B

Module V System Software(S5 CSE)

6 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

• Parameterized Macro

o A macro with argument is called parameterized macro.

o Two types of Parameterized Macros

▪ Positional Parameters

▪ Keyword Parameters

o Positional Parameters

▪ The programmer must specify the arguments in proper order.

▪ Parameters and arguments are associated according to their position in the

macro prototype and invocation.

▪ When the macro is called, the parameters will be replaced within the macro

body by the value specified.

▪ If an argument is to be omitted, a null argument should be used to maintain the

order in the macro invocation statement.

Source Code Expanded Code

ABC MACRO &A,&B

STA &A

STB &B

MEND

ABC P,Q

 ABC Q,P

 . ABC P,Q

 STA P

 STB Q

 . ABC Q,P

 STA Q

 STB P

o Keyword Parameters

▪ Arguments may appear in any order.

▪ Each argument value is written with a keyword that names the corresponding

parameter. Each parameter name is followed by =

▪ Null arguments no longer need to be used.

Source Code Expanded Code

ABC MACRO &A=,&B=

STA &A

STB &B

MEND

ABC A=P,B=Q

 ABC B=Q,A=P

 . ABC A=P,B=Q

 STA P

 STB Q

 . ABC B=Q,A=P

 STA P

 STB Q

• Nested Macro

o A macro body may contain another macro definition

o Example: Here the macro SWAP defines another macro STORE inside it.

SWAP MACRO &X,&Y //Outer Macro Definition

 LDA &X

 LDX &Y

STORE MACRO &X,&Y //Inner Macro Definition

 STA &Y

 STX &X

 MEND

MEND

o The expansion of nested macro calls follows the last-in-first-out rule(LIFO).

o The expansion of latest macro call is completed first.

Module V System Software(S5 CSE)

7 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

• Recursive Macros

o A macro definition contains another macro call. This call may be the same macro or

a different macro.

ABC MACRO &A,&B

 PQR X,Y

 MEND

PQR MACRO &P,&Q

 MEND

• MACRO PROCESSOR ALGORITHM AND DATA STRUCTURES

o Macro Processors can be implemented in two ways

▪ Two Pass Macro Preprocessor

• Pass 1: All macro definitions are processed

• Pass 2: All macro invocation statements are expanded

• Disadvantage: Nested macros definitions are not allowed.

▪ Single Pass Macro Preprocessor

• Nested macro definitions are allowed but nested calls are not allowed.

• The definition of a macro must appear in the source program before any

statements that invoke that macro.

• Data Structures for One Pass Macro Preprocessor

o Three Data Structures

▪ Definition table (DEFTAB)

• The macro definition is stored in definition table (DEFTAB), which

contains

o Macro prototype statement

o Macro body statements

• Comment lines from macro definition are not entered into

DEFTAB.

▪ Name table (NAMTAB)

• Stores macro names

• For each macro definition, NAMTAB contains pointers to

beginning and end of definition in DEFTAB.

▪ Argument table (ARGTAB)

• When macro invocation statements are recognized, the arguments

are stored in ARGTAB according to their position in argument list.

• As the macro is expanded, arguments from ARGTAB are

substituted for the corresponding parameters in the macro body.

Module V System Software(S5 CSE)

8 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

• The position notation is used for the parameters.

o &A has been converted to ?1

o &B has been converted to ?2, and so on.

• When the ?n notation is recognized in a line from DEFTAB, a

simple indexing operation supplies the property argument from

ARGTAB.

• Algorithm for One Pass Macro Preprocessor

ONE_PASS_MACRO()

{ EXPANDING= FALSE

while OPCODE !=’END’

{

 GETLINE()

PROCESSLINE()

}

}

 PROCESSLINE()

{ Search NAMETAB for OPCODE

If found then EXPAND()

Else if OPCODE=’MACRO’ then DEFINE()

Else Write source line to expanded file

}

DEFINE()

{ Enter macro name into NAMTAB

Enter macro prototype into DEFTAB

LEVEL = 1

While LEVEL > 0

{ GETLINE()

If this is not a comment line

{ Substitute positional notation for parameters

Enter line into DEFTAB

If OPCODE=’MACRO’ LEVEL = LEVEL+1

Else If OPCODE=’MEND’ LEVEL = LEVEL-1

}

Module V System Software(S5 CSE)

9 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

}

Store in NAMETAB pointers to beginning and end of definition

}

EXPAND()

{ EXPANDING = TRUE

Get prototype statement from DEFTAB

Set up arguments from macro invocation in ARGTAB

Write macro invocation to expanded file as comment

While not end of macro definition

{ GETLINE()

PROCESSLINE()

}

EXPANDING = FALSE

}

GETLINE()

{ If EXPANDING

{

Get next line of macro definition from DEFTAB

Substitute arguments from ARGTAB for positional notation

}

Else Read next line from input file

}

o The procedure DEFINE, which is called when the beginning of a macro

definition is recognized, makes the appropriate entries in DEFTAB and

NAMTAB.

o When a macro definition is being entered into DEFTAB, the normal

approach is to continue until an MEND directive is reached.

o This would not work for nested macro definition because the first MEND

encountered in the inner macro will terminate the whole macro definition

process.

o To solve this problem, a counter LEVEL is used to keep track of the level

of macro definitions.

▪ Increase LEVEL by 1 each time a MACRO directive is read.

▪ Decrease LEVEL by 1 each time a MEND directive is read.

o A MEND terminates the whole macro definition process when LEVEL

reaches 0.

o This process is very much like matching left and right parentheses when

scanning an arithmetic expression.

o EXPAND is called to set up the argument values in ARGTAB and expand

a macro invocation statement.

o The procedure GETLINE gets the next line to be processed

▪ This line may come from DEFTAB or from the input file, depending

upon whether the Boolean variable EXPANDING is set to TRUE or

FALSE.

Module V System Software(S5 CSE)

10 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

• MACHINE INDEPENDENT MACRO PROCESSOR FEATURES

o Following are the features that are not directly related to the architecture of computer for

which the macro processor is written

▪ Concatenation of Macro Parameters

▪ Generation of unique labels

▪ Conditional Macro Expansion

▪ Keyword Macro Parameters

o Concatenation of Macro Parameters

▪ Parameters to be concatenated with other character strings.

▪ Suppose a program contains a set of series of variables:

• XA1, XA2, XA3,…

• XB1, XB2, XB3,… etc.

▪ If similar processing is to be performed on each series of variables, the programmer

might want to incorporate this processing into a macro instruction.

▪ The parameter to such a macro instruction could specify the series of variables to be

operated on (A, B, C …).

▪ The macro processor constructs the symbols by concatenating X, (A, B, …), and

(1,2,3,…) in the macro expansion.

▪ Such parameters are begins with & and ends with →. (→ is a concatenation

operator. It will not appear in the macro expansion).

▪ Example:

o Generation of unique labels

▪ Labels in the macro body may cause “duplicate labels” problem if the macro is

invocated and expanded multiple times.

▪ Use of relative addressing at the source statement level is very inconvenient, error-

prone, and difficult to read.

▪ It is highly desirable to

• Let the programmer use label in the macro body

• Let the macro processor generate unique labels for each macro expansion.

▪ Labels used within the macro body should begin with $.

▪ During macro expansion, the $ will be replaced with $xx, where xx is a two-

character alphanumeric counter of the number of macro instructions expanded.

• For the first macro expansion in a program, xx will have the value AA.

• For succeeding macro expansions, xx will be set to AB, AC etc.

• This allows 1296 macro expansions in a single program

Module V System Software(S5 CSE)

11 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

▪ Example:

Source Code Expanded Code

PGM START 0

ABC MACRO &X

 ………..

$L1 ………..

JEQ $L1

………..

MEND

ABC A

ABC B

END

PGM START 0

 ………..

$AAL1 ………..

 JEQ $AAL1 1st macro expansion

 ………..

 ………..

 $ABL1 ………..

 JEQ $ABL1 2nd macro expansion

 ………..

 END

o Conditional Macro Expansion

▪ Normally same macro calls will generate same set of statements.

▪ Conditional Macro Expansion (Conditional Assembly): Sequence of statements

generated for macro expansion is depends on the arguments supplied in the macro

invocation.

▪ Conditional assembly depends on parameters provides

▪ Macro-time variables

• Any symbol that begins with symbol & and not a macro instruction parameter

inside a macro definition is considered as macro-time variable.

• Used to store working values during the macro expansion

o Usually store the evaluation result of Boolean expression

o Control the macro-time conditional structures

• It is initialized to 0

• SET macro processor directive is used to assign a particular value to a macro

time variable.

o Ex: &EORCK SET 1

&EORCTR SET &EORCTR + 1

 Here EORCK is a Macro-time variable and this statement will not be in the expanded code.

▪ Macro-time conditional structure

• IF-ELSE-ENDIF

• WHILE-ENDW

▪ IF-ELSE-ENDIF structure

• The macro processor must maintain a symbol table

• This table contains the values of all macro-time variables used

• Entries in this table are made or modified when SET statements are processed.

• This table is used to look up the current value of a macro-time variable

whenever it is required.

• When an IF statement is encountered during the expansion of a macro, the

specified Boolean expression is evaluated. If value is

o TRUE

▪ The macro processor continues to process lines from DEFTAB until it

encounters the next ELSE or ENDIF statement.

▪ If ELSE is encountered, then skips to ENDIF

Module V System Software(S5 CSE)

12 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

o FALSE

▪ The macro processor skips ahead in DEFTAB until it finds the next

ELSE or ENDIF statement.

▪ Ex:

MACRO &COND

………….

IF (&COND NE ‘’)

 PART I

ELSE

 PART II

END IF

………….

ENDM

o Part I is expanded if condition part is true, otherwise part II is expanded

o Compare operator: NE, EQ, LE, GT

• IF, ELSE and ENDIF statements will not be in the expanded code.

▪ WHILE-ENDW structure(Macro-time looping statement)

• When a WHILE statement is encountered during the expansion of a macro, the

specified Boolean expression is evaluated. If the value is

o TRUE

▪ The macro processor continues to process lines from DEFTAB until it

encounters the next ENDW statement.

▪ When ENDW is encountered, the macro processor returns to the

preceding WHILE, re-evaluates the Boolean expression, and takes

action based on the new value.

o FALSE

▪ The macro processor skips ahead in DEFTAB until it finds the next

ENDW statement and then resumes normal macro expansion.

• WHILE and ENDW statements will not be in the expanded code.

Module V System Software(S5 CSE)

13 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

▪ Example:

Macro Definition:

Macro Call:

Expanded Code:

Module V System Software(S5 CSE)

14 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Macro Call:

Expanded Code:

Macro Call:

Expanded Code:

▪ Example:

Macro Definition:

Module V System Software(S5 CSE)

15 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

%NITEMS is a macro processor function that returns the number of members in the

argument list.

Macro Call:

 Here &EOR is (00, 03, 04). Then %NITEMS(&EOR) is 3.

On the first iteration the expression &EOR[&CTR] on line 65 has the value 00.

On the second iteration it has the value 03, and so on.

Expanded Code:

o Keyword Macro Parameters

▪ Positional parameters

• Parameters and arguments are associated according to their positions in the

macro prototype and invocation.

• The programmer must specify the arguments in proper order.

• If an argument is to be omitted, a null argument should be used to maintain the

proper order in macro invocation statement.

• For example: Suppose a macro instruction ABC has 10 possible parameters, but

in a particular invocation of the macro only the 3rd and 9th parameters are to be

specified. The macro call statement is

ABC ,,DIRECT,,,,,,3

• Disadvantage: It is not suitable if a macro has a large number of parameters, and

only a few of these are given values in a typical invocation.

• Solution: Use Keyword parameters instead of Positional parameters.

▪ Keyword parameters

• Each argument value is written with a keyword that names the corresponding

parameter.

• Arguments may appear in any order.

• Null arguments no longer need to be used.

Module V System Software(S5 CSE)

16 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

• Each parameter name is followed by =

• After the =, a default value can be specified for some of the parameters. The

parameters are assumed to have this default value if its name does not appear in

the macro invocation statement.

• For example: Suppose a macro instruction ABC has 10 possible parameters, but

in a particular invocation of the macro only the 3rd and 9th parameters are to be

specified. If the 3rd parameter is named &TYPE and 9th parameter is named

&CHANNEL. The macro call statement will be

ABC TYPE=DIRECT,CHANNEL=3

 or

ABC CHANNEL=3, TYPE=DIRECT

• Advantage:

o Easier to read

o Less error-prone than the positional method

▪ Example:

Macro Definition:

The following macro definition contains 5 parameters. Three of them

(&INDEV,&EOR,&,MAXLTH) having default value.

Macro Call:

Module V System Software(S5 CSE)

17 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Expanded Code

• MACROPROCESSOR DESIGN OPTIONS

o Recursive Macro Expansion

o General-Purpose Macro Processors

o Macro Processing within Language Translators

o Recursive Macro Expansion

▪ Invoke a macro from another macro definition

▪ Example:

Module V System Software(S5 CSE)

18 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

• RDBUFF and RDCHAR are the 2 macro definitions.

• RDCHAR is used to read a character from an input device to register A.

• Macro Call: RDBUFF BUFFER, LENGTH, F1

▪ One pass macro processor cannot handle such kind of recursive macro invocation

and expansion

▪ Reasons:

• The procedure EXPAND would be called recursively, thus the invocation

arguments in the ARGTAB will be overwritten.

o The procedure EXPAND would be called when the macro was recognized.

The arguments from the macro invocation would be entered into ARGTAB

as follows.

o The Boolean variable EXPANDING would be set to TRUE, and expansion

of the macro invocation statement would begin. The processing would

proceed normally until statement invoking RDCHAR is processed. This

time, ARGTAB would look like

• The Boolean variable EXPANDING would be set to FALSE when the “inner”

macro expansion is finished, that is, the macro process would forget that it had

been in the middle of expanding an “outer” macro.

o At the expansion, when the end of RDCHAR is recognized, EXPANDING

would be set to FALSE. Thus the macro processor would forget that it had

been in the middle of expanding a macro when it encountered the

RDCHAR statement. In addition, the arguments from the original macro

invocation (RDBUFF) would be lost because the value in ARGTAB was

overwritten with the arguments from the invocation of RDCHAR

• A similar problem would occur with PROCESSLINE since this procedure too

would be called recursively.

▪ Solutions:

• Write the macro processor in a programming language that allows recursive

calls, thus local variables will be retained.

• Use a Stack to save ARGTAB.

• Use a counter to identify the expansion

Module V System Software(S5 CSE)

19 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

▪ Single Pass Macro Processor Algorithm to handle recursive calls

 ONE_PASS_MACRO()
{ EXPANDING= FALSE

 SP = -1

 N=0

while OPCODE !=’END’

{ GETLINE()

PROCESSLINE()

}

}

 PROCESSLINE()

{ Search NAMETAB for OPCODE

If found then EXPAND()

Else if OPCODE=’MACRO’ then DEFINE()

Else Write source line to expanded file

}

DEFINE()

{ Enter macro name into NAMTAB

Enter macro prototype into DEFTAB

LEVEL = 1

While LEVEL > 0

{ GETLINE()

If this is not a comment line

{ Substitute positional notation for parameters

Enter line into DEFTAB

If OPCODE=’MACRO’ LEVEL = LEVEL+1

Else If OPCODE=’MEND’ LEVEL = LEVEL-1

}

}

Store in NAMETAB pointers to beginning and end of definition

}

Procedure EXPAND

{ set S (SP + N + 2) = SP

set SP = SP + N + 2

set S (SP + 1) =DEFTAB index from NAMTAB

setup macro call argument list array in S(SP + 2)……….S(SP + N + 1) where N =

total number of arguments

while not end of macro definition and Level !=0 do

{

GETLINE

PROCESSLINE

}

N = SP – S(SP) – 2 //reset previous calls number of arguments

SP = S(SP) // previous calls starting index of S

}

Module V System Software(S5 CSE)

20 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

o G

o General-Purpose Macro Processors

▪ Macro processors that do not dependent on any particular programming language,

but can be used with a variety of different languages.

▪ Example: ELENA macro processor

▪ Advantages

• Programmers do not need to learn many macro languages.

• Although its development costs are somewhat greater than those for language

specific macro processor, this expense does not need to be repeated for each

language, thus save substantial overall cost.

▪ Disadvantages

• Large number of details must be dealt with in a real programming language

• In a typical programming language, there are several situations in which normal

macro parameter substitution should not occur

• Each programming language has its own methods for identifying comments

o Some languages use special characters to mark the start and end of a

comment.

o Some languages use a special character to mark only the start of a

comment. The comment is automatically terminated at the end of the

source line.

o Some languages use a special symbol to flag an entire line as a comment.

o In most assembly languages, an characters on a line following the end of

the instruction operand field are automatically taken as comments

• Each programming languages having their own facilities for grouping together

terms, expressions, or statements

o Some languages use keywords such as begin and end for grouping

statements.

o Others use special characters such as { and } for grouping statements.

• A more general problem involves the tokens of the programming language like

identifiers, constants, operators, and keywords

o Languages differ their restrictions on the length of identifiers and the rules

for the formation of constants.

o Some languages support multiple character operators. Eg: **

procedure GETLINE

{

if SP != -1 then

{

increment DEFTAB pointer to next entry

set S (SP + 1) = S (SP + 1) + 1

get the line from DEFTAB with the pointer S(SP+1)

substitute arguments from macro call S (SP + 2)……….. S(SP + N + 1)

 }

else

read next line from input file

}

Module V System Software(S5 CSE)

21 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

• Another potential problem with general purpose macro processors involves the

syntax used for macro definitions and macro invocation statements. With most

special purpose macro processors, macro invocations are very similar in form to

statements in the source programming language.

o Macro Processing within Language Translators

▪ The macro processors we discussed are called “Preprocessors”.

• Process macro definitions

• Expand macro invocations

• Produce an expanded version of the source program, which is then used as input

to an assembler or compiler

▪ Alternative design: Combine the macro processing functions with the language

translator

• Line-by-line macro processor

• Integrated macro processor

▪ Line-by-Line Macro Processor

• Used as a sort of input routine for the assembler or compiler

o Read source program

o Process macro definitions and expand macro invocations. The expanded

code is not written to an expanded source file.

o Pass output lines to the assembler or compiler

• Benefits

o Avoid making an extra pass over the source program. So it is more efficient

than using a macro processor.

o Data structures required by the macro processor and the language translator

can be combined (e.g., OPTAB and NAMTAB)

o Utility subroutines can be used by both macro processor and the language

translator.

▪ Scanning input lines

▪ Searching tables

▪ Data format conversion

o It is easier to give diagnostic messages related to the source statements.

▪ Integrated Macro Processor

• An integrated macro processor can potentially make use of any information

about the source program that is extracted by the language translator.

• Many real programming languages have certain characteristics that create

unpleasant difficulties.

o Ex : Consider the following FORTRAN statement

▪ DO 100 I = 1,20

• It is a normal DO statement

• 100 is the line number

▪ DO 100 I = 1

• An assignment statement

• DO100I is variable (blanks are not significant in FORTRAN)

Module V System Software(S5 CSE)

22 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

o The proper interpretation of the characters DO, 100 etc, cannot be decided

until the rest of the statement is examined. Such interpretations would be

very important for a macro expansion with macro name I.

• An integrated macro processor can support macro instructions that depend upon

the context in which they occur.

o The expansion of macro could also depend up on a variety of

characteristics of its arguments.

▪ Disadvantages of Line-by-line and Integrated Macro processor:

• More expensive: The cost of macro processor development must be added to

the cost of language translator, which result in a more expensive piece of

software.

• More complex: The assembler will be more complex.

• Size is larger: The size may be problem if the translator is to run on a computer

with limited memory.

• Take more time: The assembler will take more time to assemble the code.

Previous Year University Questions

1. Explain the concept of macro definition and expansion with the help of examples.
2. Differentiate between a macro and a subroutine. Illustrate macro definition and expansion using

an example

3. A code segment need to be repeatedly used in various parts of assembly language program

and fast execution is also needed. Would you use a macro or a subroutine? Justify your

answer with help of examples

4. Describe the data structures used in a one pass macro processor algorithm. Give examples
5. What are the data structures required for a macroprocessor algorithm? Explain the format of each

6. Give the algorithm for a one pass macro processor

7. Explain the working of One pass Macro Processor

8. Write the algorithm for one pass macro processor and explain the process, showing when and

how the different data structures are used

9. Certain macro processor features are independent of the machine architecture Give the details

of such machine independent macro-processor features

10. Write short note on concatenation of macro parameters within a character string

11. How are unique labels generated in a Macro Expansion

12. Is it possible to include labels in the body of macro definition? Justify your answer.
13. Is it possible to use labels within the macro body? Explain your answer with the help of

examples. Also illustrate a possible solution for the same

14. Explain conditional macro expansion with an example

15. Explain the different types of conditional macro expansion statements and their

implementation with examples

16. Write notes on keyword macro parameters, giving suitable examples

17. Differentiate between keyword and positional macro parameters

18. List and explain the different design options available for macroprocessors

19. Explain recursive macro expansion with example

20. Write notes on Recursive Macro Expansion
21. What do you mean by recursive macro expansion? What are the possible problems associated

with it?

Module V System Software(S5 CSE)

23 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

22. What are the important factors considered while designing general purpose macro

processors?

23. What is meant by line-by-line macro processor? What are its advantages?

